
Team #8040 Page 1 of 40

For office use only

T1 ________________

T2 ________________

T3 ________________

T4 ________________

Team Control Number

8040

Problem Chosen

A

For office use only

F1 ________________

F2 ________________

F3 ________________

F4 ________________

2017
HiMCM

Summary Sheet

The problem of sky display with Drone can be interpreted as designing visible
and safety locus of drone lights to form image of three different objects, which are
Ferries wheel, dragon, and a self-designed pattern (a smiling face) respectively. In this
paper, we successfully developed a few comprehensive mathematical models to
determine the number of drones required and model their initial location and the flight
paths mathematically in both static and animate state.

We addressed this problem mainly through space coordinate frame which allowed
us to formulate the motions of all the drones in all animations. In the first part, we
designed the Ferris wheel as a composition of several geometrical shapes, a circle
with spokes and two identical triangles. Considering the space coordinate of every
points and using the idea of matrix, we constructed the model based that on the
thought of substituting every points own coordinate with its consecutive former one in
the same circular motion path.

 In the second part, we made a two dimensional dragon that has detailed features
such as head, tail, claw, and scale. We made the body of the dragon as the shape of
sin(x), and the movement model was created, enabling the dragon to move smoothly
and periodically during the animation.

For the third part, our team decided to create a calm face that would eventually
turn into a smile face. We made a few functions to express straight lines that represent
expressionless eyes and mouth were bent to a smile face by changing the coordinates
of the points in the straight line to coordinates of points that fit in parabolas..

After finishing all three models, our team gave out the evaluation for each of them
with MATLAB programming. Based on the calculation, we determined to use up to
427 drones to create three sky displays. And the required launch area would take up
9m×9m, and the air space of 100m in length, 50m in width and 80m in height was
required. The duration for the light show would be 30 minutes.

In summary, our mathematical model could successfully determine the
requirements for this aerial light show.

Team #8040 Page 2 of 40

2017
20th Annual High School Mathematical Contest in Modeling (HiMCM)

Summary Sheet
Team number: 8040 Problem chosen: A

Abstract

The problem of sky display with Drone can be interpreted as designing visible
and safety locus of drone lights to form image of three different objects, which are
Ferries wheel, dragon, and a self-designed pattern (a smiling face) respectively. In this
paper, we successfully developed a few comprehensive mathematical models to
determine the number of drones required and model their initial location and the flight
paths mathematically in both static and animate state.

We addressed this problem mainly through space coordinate frame which allowed
us to formulate the motions of all the drones in all animations. In the first part, we
designed the Ferris wheel as a composition of several geometrical shapes, a circle
with spokes and two identical triangles. Considering the space coordinate of every
points and using the idea of matrix, we constructed the model based that on the
thought of substituting every points own coordinate with its consecutive former one in
the same circular motion path.

 In the second part, we made a two dimensional dragon that has detailed features
such as head, tail, claw, and scale. We made the body of the dragon as the shape of
sin(x), and the movement model was created, enabling the dragon to move smoothly
and periodically during the animation.

For the third part, our team decided to create a calm face that would eventually
turn into a smile face. We made a few functions to express straight lines that represent
expressionless eyes and mouth were bent to a smile face by changing the coordinates
of the points in the straight line to coordinates of points that fit in parabolas..

After finishing all three models, our team gave out the evaluation for each of them
with MATLAB programming. Based on the calculation, we determined to use up to
427 drones to create three sky displays. And the required launch area would take up
9m×9m, and the air space of 100m in length, 50m in width and 80m in height was
required. The duration for the light show would be 30 minutes.

In summary, our mathematical model could successfully determine the
requirements for this aerial light show.

Keywords: drone, aerial light show, Ferris wheel, dragon, MATLAB programming

Team #8040 Page 3 of 40

A letter to the Mayor
Dear Mr. Mayor：

Using a cluster of drones to perform a choreographed aerial light show will be a
stirring as well as an environmentally friendly “firework show” for the enormous
citizens. From your requirement, our team successfully determined the number of
drones needed and the flight route of the three figures: Ferries wheel, dragon, and a
self-designed pattern (a smiling face). Moreover, we evaluated the safety and the
requirement of the performance site and space.

 We treated the first pattern of ferries wheel as three parts：two triangles along
with a circle and spokes (wheel) in the middle of them. In order to form a desirable
viewing angle for the audiences to enjoy the performances, the plane of the pattern
presented a 45° angle with respect to the horizon. We obtained the spin model of the
wheel by using several rotation mathematical formulas. The total number of drones
for demonstrating the ferries wheel was 427.

 In the second part, we made a two dimensional dragon that has detailed features
such as head, tail, claw, and scale. We made the body of the dragon as the shape of
sin(x), and the movement model is created, enabling the dragon to move smoothly and
periodically. To illustrate the figure of dragon, only 363 drones in total were needed.

 The third pattern that we designed was similar to a dynamic emoji. At first, the
pattern was just a poker face, the eyes and the mouth were just three straight line
segments. By applying movement models we designed, the poker face would turn to a
smiling face. The total number of drones needed was 240.

 Based on the calculation, our group decided to use up to 427 drones to create
three possible sky displays. And the required launch area would took up 9m×9m, and
the air space of 80m as height, 50m as width, and 100m as length was required. The
duration for the light show would be 30 minutes.

To sum up, we have already determined the prerequisites for this aerial light
show, and we recommend that this show to be performed for its beautiful and
magnificent visual effects. Attached on the next page is the schematic diagram of the
drone clusters as sky displays. It is a pleasure for us to design such a wonderful event
and hope the aerial light show will hold soon!

Yours sincerely,

Team#8040

Team #8040 Page 4 of 40

Schematic diagram

Display 1：Ferris Wheel

Display 2：Dragon

Display 3：Smile face

Team #8040 Page 5 of 40

Catalogue

Abstract…………………………………………………………..1

Aletter to the Mayor………….…………………………………..2

1. Restatement……………..……………………………………...5

2. Assumption& Justification………………………....…....….5

3. Definition of Variables ………………………....…......…....….7

4. Math Modeling……………..…………………………………8

4.1 Math Modeling of the Ferris wheel…………………..…........ 8

4.2 Math Modeling of the Dragon…………………..…………....16

4.3Math Modeling of the Smile face………………………..…....25

5. The requirements for the 3-display light show …………… 28

6. Evaluation of the Model……..………………………………..30

7. Conclusion………….……………………………………..…...32

8. Reference………………………….………………………..….33

9. Appendix……………….………………………………..…..34

Team #8040 Page 6 of 40

1. Restatement

Because Intel has succeeded in making a beautiful choreographed light show by

using a cluster of 500 drones, our city have decided to add an aerial light show due to

the annual festival. The mayor asked our team to create three possible sky displays by

using drones.

The problem of Sky Display with Drone can be interpreted as designing visible

and safety locus of drone lights to form image of three different objects, which are

respectively Ferris wheel, Dragon and an image created by our team. The core of the

problem solving is to determine the number of drones required and model their initial

location and the flight paths mathematically in both static and animate state. Besides

the core, there are several realistic problems for our team to solve, such as required

launch area, required air space, safety considerations, and duration of the aerial light

show.

2. Assumption& Justification

Assumption 1: We treat the figures as two-dimensional patterns, but several layers

might exist.

Justification 1: Though making the whole aerial light show in a three-dimensional

way might be cool and beautiful; it is really hard to achieve effect. Even the only

example the question gave failed to make the patterns in the video to stand up and

become three-dimensional. There are, however, layers of the pattern in the video, so

we decided to make the light show similar to them.

Assumption 2: The angle of elevation for viewing the sky light displays is 45°.

Justification 2: From the video, we find a fact that their images are facing down

toward the audience. In order to show the best part of our show and reduce our

difficulty of calculation, we decide to estimate the angle of elevation for the light

show is 45°.

Team #8040 Page 7 of 40

Assumption 3: For each drone in the figures, the air flow interference caused by

neighboring drones can be neglected.

Justification 3: According to our research about the drones used in Intel’s aerial light

show, the maximum tolerable wind speed in GPS mode is 10m/s, which means that

the normal days wind will not affect our light show, so we think that we can neglect

the air flow interference. If the wind speed at the day of our light show is greater than

12m/s, we would cancel our light show and find another day to do the sky displays.

Assumption 4: The average flying altitude of the aerial light show patterns is

50meters.

Justification 4: After looking up some information on the internet, we find that

normal fireworks can fly to a height about 50m above the ground. Since our display

should be similar to a fireworks display, we think an average of 50m above the

ground will bring us the best visual effect by the show.

Assumption 5: The safety distance between the drones is 1 meter.

Justification 5: By asking professional staffs in DJI-Innovations Company and

estimating the distances between drones of the Intel’s light show, we get the

conclusion that drones would be safe enough when they are one meter apart from each

other, though they normally flies 3 meter apart from each other.

Team #8040 Page 8 of 40

3. Definition of Variables

Symbol Definitions

n The number of drones on the circle of the Ferris wheel

r The radius of the Ferris wheel

θ The angle between the radius of the circle which that drone is on and
the +y axis (Spinning clockwise)

c The distance from one point on the radius to the center of the Ferris
wheel at the position θ = 0, 1/4π, 1/2π, 3/4π

m The range of the drones' x-axis which act as the base line of the triangle

d The range of the drones' y-axis which act as the side boundary of the

triangle

（𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐, 𝑧𝑧𝑐𝑐) The center coordinate of the circle

t The amount of time for the drones to be on position

1()x t The location of the drone on x-axis

1y ()t The location of the drone on y-axis

1z ()t The location of the drone onz-axis

𝑣𝑣1(𝑡𝑡) The speed of the drone on x-axis
𝑣𝑣2(𝑡𝑡) The speed of the drone on y-axis
𝑣𝑣3(𝑡𝑡) The speed of the drone on z-axis
v(t) The vector that shows the actual speed of the drone

T The duration time of the displays

N total The total number of drones required for the sky display

Team #8040 Page 9 of 40

4. Math Modeling

4.1 Model of the Ferris wheel

4.1.1 Definition the coordinate of the drone location

In the first part of the question, we need to find the way initial location for each

drone device that will result in the sky display of a static image. In order to achieve

this, we should determine the initial location and flight path of one drone, and then we

can apply them to the rest of the drone.

If the initial coordinate of the drone is (a, b), and the final coordinate of the drone

is (x, y), the direction of the flight can be represented by θ which is the angle between

+y axis and the direction that the drone is flying(goes in clockwise) in the coordinate

system (Figure 1).

Figure 1. The Definition of the drone location coordinate

With the information provided above, the direction of the flight can be

represented easily.

If x-a > 0 and y-b > 0, θinitial = 0, θfinal = θinitial + arctan[(x-a)/(y-b)];

If x-a > 0 and y-b < 0, θinitial = 90, θfinal = θinitial + arctan[(b-y)/(x-a)];

If x-a < 0 and y-b < 0, θinitial = 180, θfinal = θinitial + arctan[(a-x)/(b-y)];

If x-a < 0 and y-b > 0, θinitial = 270, θfinal = θinitial + arctan[(y-b)/(a-x)].

To make an image of a Ferris wheel, we need to separate the Ferris wheel to

three different parts: the wheel, the triangle support, and the spokes, which looks just

like that plot shown below (Figure 2). Black represents for the wheel, red for the

Team #8040 Page 10 of 40

spokes, and pink for the triangle, while the center coordinate of the circle

is（𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐 , 𝑧𝑧𝑐𝑐) .

In order to make our Ferris wheel more stereoscopic, we decided to put a

triangle on each side of the Ferris wheel. The rest of the modeling will be divided into

three parts, each for a category.

Figure 2. The plot of the Ferris wheel to three different parts: the wheel, the

triangle support, and the spokes

(1) Wheel

In order to make a model that fits into any situation, we use the angle θ to

represent varies conditions. Assuming the radius of the circle is r, so for any point on

the circle, its coordinate is

(x + sinθ * r, y + cosθ * r, z)

And because we are using drones to form a wheel, the Δθ between them is

constant, so the variables θ can be represented in the way:

θ = 0 + Δθ*n

 (0 ≤ n < 2π/Δθ, n is an integer)

Here, n can represent the number of the drones.

Finally, in order to let people have a better view of the Ferris wheel, it has to tilt

at an angle of 45 degrees(just like the drone light show held by Intel) based on the line

y = x, so the final coordinate on the wheel is

Team #8040 Page 11 of 40

⎩
⎪
⎨

⎪
⎧

𝑥𝑥 = 𝑥𝑥𝑐𝑐 + 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃

𝑦𝑦 = (𝑦𝑦𝑐𝑐 + 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)×
√2
2

𝑧𝑧 = 𝑧𝑧𝑐𝑐 + (𝑦𝑦𝑐𝑐 + 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)×
√2
2

(2) Spokes

In the Ferris wheel, there are eight radius, or four diameters acting as the spokes

of the wheel. Assuming the distance from one point on the radius to the center of the

circle is c， the coordinates of the point on the spokes can also be represented by c

and θ, which is:

(x+sinθ*c, y+cosθ*c, z)

 (-19 < c < 19, c ≠ 0 ; θ = 0, 1/4π, 1/2π, 3/4π in four different situation)

Then, in order to enhance people’s viewing experience, we title the spokes at an

angle of 45 degree base on the line y = x, and the resulting coordinate is

⎩
⎪
⎨

⎪
⎧

𝑥𝑥 = 𝑥𝑥𝑐𝑐 + 𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃

𝑦𝑦 = (𝑦𝑦𝑐𝑐 + 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)×
√2
2

𝑧𝑧 = 𝑧𝑧𝑐𝑐 + (𝑦𝑦 + 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)×
√2
2

 (3) Triangle

At the bottom of the Ferris wheel, there should be a triangle stand that supports

the Ferris wheel. Assuming the range of the drones' x-axis which act as the base line

of the triangle is m, and the range of the drones' y-axis which act as the side boundary

of the triangle is d, we will make two triangle supports on each side of the Ferris

wheel, and the coordinates of it can be represented as:

⎩
⎪
⎨

⎪
⎧

𝑥𝑥 = 𝑥𝑥𝑐𝑐 + 𝑚𝑚

𝑦𝑦 = �𝑦𝑦𝑐𝑐 −
3
2
𝑟𝑟� ×

√2
2
−

3√2
2

𝑧𝑧 = 𝑧𝑧𝑐𝑐 +
3√2

2
−
√2
2

(
3
2
𝑟𝑟 − 𝑦𝑦𝑐𝑐)

⎩
⎪
⎨

⎪
⎧

𝑥𝑥 = 𝑥𝑥𝑐𝑐 + 𝑚𝑚

𝑦𝑦 = �𝑦𝑦𝑐𝑐 −
3
2
𝑟𝑟�×

√2
2

+
3√2

2

𝑧𝑧 = 𝑧𝑧𝑐𝑐 −
3√2

2
−
√2
2

(
3
2
𝑟𝑟 − 𝑦𝑦𝑐𝑐)

(-1/2r ≤ m ≤ 1/2r)

Team #8040 Page 12 of 40

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥 = 𝑥𝑥𝑐𝑐 +

1
3
𝑑𝑑

𝑦𝑦 = (𝑦𝑦𝑐𝑐 + 𝑑𝑑)×
√2
2
−

3√2
2

𝑧𝑧 = 𝑧𝑧𝑐𝑐 +
3√2

2
−
√2
2

(−𝑦𝑦𝑐𝑐 − 𝑑𝑑)

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥 = 𝑥𝑥𝑐𝑐 +

1
3
𝑑𝑑

𝑦𝑦 = (𝑦𝑦𝑐𝑐 + 𝑑𝑑)×
√2
2

+
3√2

2

𝑧𝑧 = 𝑧𝑧𝑐𝑐 −
3√2

2
−
√2
2

(−𝑦𝑦𝑐𝑐 − 𝑑𝑑)

(-3/2r<d ≤ 0)

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥 = 𝑥𝑥𝑐𝑐 −

1
3
𝑑𝑑

𝑦𝑦 = (𝑦𝑦𝑐𝑐 + 𝑑𝑑)×
√2
2
−

3√2
2

𝑧𝑧 = 𝑧𝑧𝑐𝑐 +
3√2

2
−
√2
2

(−𝑦𝑦𝑐𝑐 − 𝑑𝑑)

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥 = 𝑥𝑥𝑐𝑐 −

1
3
𝑑𝑑

𝑦𝑦 = (𝑦𝑦𝑐𝑐 + 𝑑𝑑)×
√2
2

+
3√2

2

𝑧𝑧 = 𝑧𝑧𝑐𝑐 −
3√2

2
−
√2
2

(−𝑦𝑦𝑐𝑐 − 𝑑𝑑)

(-3/2r <d < 0)

4.1.2 Initial location of the drones for the Ferris wheel

 Now, we suppose the ith drone has the location(𝑥𝑥𝑖𝑖0,𝑦𝑦𝑖𝑖0, 𝑧𝑧𝑖𝑖𝑖𝑖) when t=0, and the

Ferris wheel is supposed as a perpendicular to the plane “xoy”. The radius of the circle

is r, and the center of a circle is (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐, 𝑧𝑧𝑐𝑐). Then we get the circle function:

2 2 2 2() () ()c c cx x y y z z r− + − + − =

 In order to be easy to calculate, we set the space rectangular coordinate system to

be parallel to the plane “yoz”, while the center of the circle is on the z-axis. In this

case, the circle would tangent to the origin of coordinate, so that the abscissa is now 0,

thus we can get:

2 2 2 2() () ()
=0

c c cx x y y z z r
x

 − + − + − =



Then
2 2 2 2() ()c c cx y y z z r+ − + − =

 Because there are total n drones on the circle, we will uniformly set these drones,

while there will be a drone arranged at 2𝜋𝜋
𝑛𝑛

 interval，just like the following graph

(Figure 3) :

Team #8040 Page 13 of 40

Figure 3. The graph of initial location of the drones for the Ferris wheel

The corresponding coordinates are:

1 1

2 2

(0, ,)
(0, ,)

(0, ,)n n

y z
y z

y z










Since the following coordinate can be obtained by spinning the previous

coordinate. From the rotation formula, we get:

1 1

cos sin 2(,) (,) , 2,3, , n ,
sin cos

T T
k k k ky z y z k

n
θ θ πθ
θ θ − −

 
= = = − 



Which is the same as:

1 1

2 2cos() sin()
(,) (,) , 2,3, , n

2 2sin() cos()

T T
k k k k

n ny z y z k

n n

π π

π π − −

 
 

= = 
 −  



Since:
2 2 2 2

1 1
2 2 2 2

() ()
() ()

c k c k c

c k c k c

x y y z z r
x y y z z r

− − + − + − =


+ − + − =
Then we can get:

Team #8040 Page 14 of 40

2 2 2 2 2
1 1 1

2 2 2 2 2

2 ()
2 ()

c k k c c k c

c k k c c k c

x y y y y z z r
x y y y y z z r

− − − + − + + − =


+ − + + − =
2 2 2 2 2

1 1 1
2 2 2 2 2

2 () 0
2 () 0

k k c c k c c

c k k c c k c

y y y y z z x r
x y y y y z z r

− − − − + + − + − =


+ − + + − − =
2 2 2 2 2

1 1 1
2 2 2 2 2

2 () 0
2 () 0

k k c c k c c

k k c c k c c

y y y y z z x r
y y y y z z x r

− − − − + + − + − =


− + + − + − =

2 2 2 2 2
1 1 1

2 2 2 2 2

2 2 2 2 2
1

1

2 2 2 2 2

2 () 0
2 () 0

2 (2) 4(())
=

2
2 (2) 4(())

=
2

k k c c k c c

k k c c k c c

c c c k c c
k

c c c k c c
k

y y y y z z x r
y y y y z z x r

y y y z z x r
y

y y y z z x r
y

− − −

−
−

 − + + − + − =


− + + − + − =

± − + − + −

± − + − + −

Assuming the initial value of the iteration is 1 1(0, ,)y z , which can arbitrarily

select a point on the circle, and then the sequential of points on the circle is numbered
in clockwise. Finally, the location of all drones can be solved by constantly iterating.

4.1.3 The flight path of each drone for the Ferris wheel

Assume the number of drones we required on the circle of the Ferris wheel is n,

and the “i th” drone is expressed as 𝑎𝑎𝑖𝑖. We take a point in the real space as the original

point, and we can establish a space rectangular coordinate system based on that point.

In this situation, the location for drone 𝑎𝑎𝑖𝑖in time t is(𝑥𝑥𝑖𝑖(𝑡𝑡),𝑦𝑦𝑖𝑖(𝑡𝑡), 𝑧𝑧𝑖𝑖(𝑡𝑡)) , and the

duration time for the display is T.

 Then the curvilinear equation that represents the path for the drone from the

launch area to the final exhibit position is:

1

1 1

1

()
y y () 0
z z ()

x x t
t t T
t

=
 = ≤ ≤
 =

，

 Because the process of flying is continuous, 𝑥𝑥𝑖𝑖(𝑡𝑡),𝑦𝑦𝑖𝑖(𝑡𝑡) and 𝑧𝑧𝑖𝑖(𝑡𝑡)is considered

to be continuous function.

Team #8040 Page 15 of 40

 Moreover, we assume the location of one drone at the initial time t is (x, y, z)，

and then the velocity vector of the drone is 𝑣⃗𝑣(𝑡𝑡) = �𝑣𝑣1(t),𝑣𝑣2(t),𝑣𝑣3(t)� ,

𝑣𝑣1(t),𝑣𝑣2(t),𝑣𝑣3(t) is the speed for the drone in x, y, and z axis respectively. We can

get the magnitude of the velocity:

2 2 2
1 2 3() () + () + ()v t v t v t v t=



 According to the relationship between distance and velocity, we get:

1

2 1

3

()

() 0

()

dx v t
dt
dy v t t T
dt
dz v t
dt

 =

 = ≤ ≤

 =

，

4.1.4 Animate rotation of the Ferris wheel

According to the rotation formula, when a unit circle is rotating clockwise in a

plane, the coordinates before rotating is 1 1((), ())i ix t y t , and the point after rotating is

1 1((), ())i ix t y t′ ′ , the rotating angle is θ. Then we have:

1 1 1 1

cos sin
((), ()) ((), ())

sin cos
T T

i i i ix t y t x t y t
θ θ
θ θ

 ′ ′ =  − 

So:

1 1 1

1 1 1

()= ()cos + ()sin
() ()sin + ()cos

i i i

i i i

x t x t y t
y t x t y t

θ θ
θ θ

′
 ′ = −

1 1

1 1

()(cos 1)+ ()sin
()sin + ()(cos 1)

i i

i i

x x t y t
y x t y t

θ θ
θ θ

∆ = −
∆ = − −

Because its in a three-dimensional space, we can apply the formula and get:

1 1 1

1 0 1 1 0

()= ()cos + ()sin
() ()sin +(()) cos

i i i

i i i

y t y t z t
z t z y t z t z

θ θ
θ θ

′
 ′ − = − −

2 1 1 1 1 1 1 1 0 0((), (), ()) (0, ()(cos 1)+ ()sin), ()sin +(())(cos 1)i i i i i i ix t y t z t y t z t y t z t z zθ θ θ θ∆ = − − − − −

So the total increment is:

1 1 1 1 1 1 1 2 1 1 1((), (), ())= ((), (), ())+ ((), (), ())i i i i i i i i ix t y t z t x t y t z t x t y t z t∆ ∆ ∆

Team #8040 Page 16 of 40

As a result:

1 1 1 1 1 1((), (), ()) ((), (), ())i i i i i ix t t y t t z t t x t y t z t+ ∆ + ∆ + ∆ =

Accordingly, the Ferris wheel can be able to spin with incrementally iterate the
function.

4.1.5 Examination of the model of the Ferris wheel

In the first display, we would like to build a Ferris wheel with the height of the

wheel 50m, radius of 20m. We assume the radius of the circle r, the hypotenuse of the

triangle d, and the base of the triangle m is 20m, 30m, and 20m respectively. Because

the safety distance is 1meter, we can calculate the drones needed to form the Ferris

wheel based on the calculations:

(1) The amount of drones for the circle: 2π × 20 ≈ 120;

(2) The amount of drones for the spoke: 19 × 8 + 1 = 153;

(3) The amount of drones for one triangle: 20 + 2 × 30 − 3 = 77;

 Combining all these drones together, we can get:

The amount of drones for the Ferris wheel: 77 × 2 + 120 + 153 = 427

We determined the center of the wheel to be (0, 0, 50), and using the formula

provided previously we can calculate all the coordinates for the drones, and make a

3-D version of the Ferris wheel with MATLAB programming (shown in Figure 4).

Figure 4. The 3-D graph of the Ferris wheel with MATLAB programming

Team #8040 Page 17 of 40

4.2 Math Modeling of the Dragon

4.2.1 Introduction of Chinese Dragon

Figure 5. The picture of Chinese dragon

The above figure 5 shows Chinese dragon, which symbolizes dignity and

imperial authority. In the second part of the aerial light show, the drones will roughly

form an image of Chinese dragon.

Display 2 requires us to design a pattern that demonstrates the figure of dragon to

the audiences. In order that the aerial light show performs dynamically and vividly,

we separate the dragon’s body into five parts: the body lines, scales, claws, head and

tail.

4.2.2 The math model of the Dragon

To illustrate the Dragon display accurately, we establish a rectangular plane

coordinate system, assuming the junction point of boundary of the lower side of the

body (neck) and the head as origin (0,0) (this point can be seen as throat if we

view it from the anatomical point of view) and the unit on each axis is meter (m).

After splitting the dragon into five parts, we begin to analyze the figure respectively,

utilizing functions to approximate the position of each drone in the cluster.

Team #8040 Page 18 of 40

(1) Body Lines

The traditional body figure of Chinese dragons is similar to sine function, as we

have seen from the above picture. Therefore, we approximate the body lines of it by

using two sine functions that are the same in amplitude and period, but different in

y-coordinate for an identical x-input:

.

From the equations above, the period for each function is 50. We cut out 2

periods of the functions between x=0 and x= 100 to simulate the body lines of the

functions. To form a pair of “parallel” sine graphs, 100 drones at each side of the

body boundary are needed. For the sake of visual effect, the gap between two

successive drones should be as small as possible to make the image full and

continuous.

However, we must obey the rule: the safe distance between two drones is 1m.

Therefore, by letting two successive drones keep a safe distance of 1m in the

horizontal distance, the drone cluster can demonstrate the best visual effect; at the

same time, the flight of the drones can be deemed as a safe flight.

(2) Scales

To present the figure, there must be at least three drones to represent one piece of

scale. In our design, the position of three drones can be seen as three vertexes of an

isosceles right triangle: the drone lies at the top and the bottom left vertex are parallel

to each other, while another vertex is located to the right of these two vertexes. Since

the outline of scales is roughly a piece of arc, which is a closed curve, the spacing

between two neighboring drones should also be as small as possible to make the

pattern seem continuous.

In consideration of the safe distance and the complexity of calculation process,

the distance between the right drone and the top left or the bottom left drone should

Team #8040 Page 19 of 40

both be , and thus the horizontal distance and vertical distance between

them are equal to 1m.

Except for determining basic single pattern of a piece of scale, how to place the

single piece of scale inside dragon’s body need to be determined. In order to express

the position of each single scale, we assign the drone located at the right corner as the

datum point. All datum points can be represented with two functions:

First, we divide the vertical distance between upper boundary and the lower

boundary of the body into three equal parts, the length of each part is 4m, which is

equivalent to shift the lower body line upward by 4 units and 8 units.

The distance between each datum point is 5 meters; however, in consideration of the

safety, successive scales cannot locate on the same graph. Therefore, when x=5, the

scale locates on the function ; when n=10, the scale locates on the

function , etc.

Using mathematical language to describe the location of the datum points can be

represented by the following:

Based on the datum point (right corner of the isosceles right triangle), the

coordinate of top left corners and the bottom left corners can also be determined

easily by shifting the function where the datum points located on. For the top left

vertex, the new function representing it can be obtained by shifting the original

function 1 unit upward and one unit leftward:

Team #8040 Page 20 of 40

For the bottom left vertex, the new function representing it can be obtained by

shifting the original function 1 unit downward and 1 unit leftward:

(3) Claws
For the dragon claws, the expected visual effect is that the claws are tightly

attached to the body of the dragon and they do not need to be flexible. There are 4

claws which affiliate to the dragons are arranged in a relatively symmetrical way --

two on one side and two on the other side.

In order to achieve the animation of the claws that they are tightly attached to the

body, our team constructs the model of the claws to be relative fixed points to the

nearest point of the body, which means it is nevertheless a combination of several

moving points relative to the sky.

For instance, one of the position where our team decided to place a claw is at (12,

g(12)), which is for the claw at the upper front. Since the expected width of the arm is

approximately 2m, the other point that helps establish the arm is at (14, g(14)). As for

the rest of the points that compose that arm and that claw, their coordinates are

recorded in the table (labeled UF, for upper front).

For calculation convenience, the x-y coordinate of the points composing the arm

are taken to the nearest whole numbers. Similarly, every point is assigned a serial

number and a particular coordinate(Lower Front -- LF, Upper End -- UE, Lower End

-- LE). The total number of drone need for the dragon paws is 48.

Team #8040 Page 21 of 40

Table1. The serial number and the x-y coordinate of the dragon claws

Serial
Number

x-coordinate y-coordinate
Serial

Number
x-coordinate y-coordinate

UF-01 13 21 UE-01 63 21
UF-02 15 21 UE-02 65 21
UF-03 14 22 UE-03 64 23
UF-04 16 22 UE-04 66 23
UF-05 13 23 UE-05 63 25
UF-06 15 23 UE-06 65 25
UF-07 12 24 UE-07 62 26
UF-08 14 24 UE-08 64 26
UF-09 11 25 UE-09 65 26
UF-10 10 26 UE-10 61 27
UF-11 13 25 UE-11 63 27
UF-12 12 26 UE-12 65 27
UF-13 14 25 LE-01 70 4
UF-14 14 26 LE-02 71 2
LF-01 21 3 LE-03 73 2
LF-02 24 0 LE-04 70 1
LF-03 22 0 LE-05 72 1
LF-04 21 -1 LE-06 68 0
LF-05 23 -1 LE-07 69 0
LF-06 22 -2 LE-08 71 0
LF-07 21 -2 LE-09 72 0
LF-08 20 -2 LE-10 70 -1
LF-09 22 -3 LE-11 71 -1
LF-10 20 -3
LF-11 19 -3

(4) Head

The dragon head is a sophisticated image which roughly delineates the

2-dimensional outline of the dragon. However, since it is the head of the dragon, it

should be stable as a real dragon. Therefore, the image of the head can be presented as

planned configuration of drones. Therefore, the points with assigned coordinates are

listed below to form an image of the dragon’s head. The total number of drone

required for head is 49.

Team #8040 Page 22 of 40

Table2. The serial number and the x-y coordinate of the dragon head

Serial
Number

x-coordinate y-coordinate
Serial

Number
x-coordinate y-coordinate

H-01 0 12 H-26 -10 4
H-02 -1 13 H-27 -9 4
H-03 -1 14 H-28 -8 4.5
H-04 -1 15 H-29 -7 5
H-05 -2 14 H-30 -6 5
H-06 -3 13 H-31 -5 5
H-07 -4 12 H-32 -4 4
H-08 -5 11 H-33 -4 3
H-09 -6 10 H-34 -5 2
H-10 -7 9.5 H-35 -6 1.5
H-11 -8 9 H-36 -7 1
H-12 -9 8.5 H-37 -8 1
H-13 -10 8 H-38 -9 0.5
H-14 -11 7.5 H-39 -10 0
H-15 -12 7 H-40 -9 -1
H-16 -13 8 H-41 -8 -2
H-17 -14 7 H-42 -7 -1
H-18 -15 6 H-43 -6 -1
H-19 -15.5 5 H-44 -5 -1
H-20 -16 4 H-45 -4 -1
H-21 -15 3 H-46 -3 -1
H-22 -14 3 H-47 -2 -1
H-23 -13 3 H-48 -1 -0.5
H-24 -12 3 H-49 0 0
H-25 -11 3.5

(5) Tail

The dragon tail is source of power to bring the dragon into motion, and it is the

part which moves the most sharply. To keep it simple, the tail is a symmetrical image.

To achieve the most optimum animation that can generate a both understandable and

require the least complex calculation, our team make the tail of the dragon oscillate up

and down periodically.

To be specific, all the single particles are designed to wave up and down

periodically. Therefore, similar to the claws, every single drone should be assigned a

coordinate. The total number of drone required for the tail is 26.

Team #8040 Page 23 of 40

Table3. The serial number and the x-y coordinate of the dragon tail

Serial
Number

x-coordinate y-coordinate
Serial

Number
x-coordinate y-coordinate

T-01 101 13 T-14 106 7
T-02 102 14 T-15 105 6
T-03 103 14.5 T-16 104 5
T-04 104 15 T-17 103 4
T-05 105 15 T-18 104 3
T-06 106 15 T-19 105 2
T-07 105 14 T-20 106 1
T-08 104 13 T-21 105 1
T-09 103 12 T-22 104 1
T-10 104 11 T-23 103 1.5
T-11 105 10 T-24 102 2
T-12 106 9 T-25 101 3
T-13 107 8 T-26 100 1

4.2.3 Examination of the model of the Dragon

Based on the calculations and information above, in order to construct the dragon

figure the total number of drones needed is 383. The calculation process is shown

here:

Ntotal=Nbody lines+Nscales+Nclaws+Nhead+Ntail

=100*2+3*20+48+49+26

=383

Then we used MATLAB programming to create the initiated dragon image that

we estimate to happen shown in figure 6.

Figure 6. The 2-D graph of the Dragon with MATLAB programming

Team #8040 Page 24 of 40

4.2.4 The movement of drones of the Dragon

Since the dragon is made up of hundreds of drones, every single drone plays an

important role in determining animation of the dragon image. Therefore, a way to

describe the motion of drones, which are regarded as particles, is needed. A wavelike

periodic function is appropriate to describe the motion.

Consider the shape of the dragon and its nature of movement which is like

stirring the air beside it in a shape of “S”. So this effect can be accomplished by

wavelike motions of all the particles on the body. The initiated dragon image is shown

on the Figure 6, which means the animation starts from this static state. Wavelike

up-and-down motion is a kind of harmonic motion. To begin with, period is the first

required to know. A particle that is in a perpendicular harmonic motion has the same

average perpendicular velocity of the same particle that is running around a

perpendicular circle in a radius same as the range of the harmonic motion with the

perpendicular velocity of the former.

Therefore, as shown by the Figure 6, the period of the motion of one particle can

be determined by the circumference of the circle drawn by the particle divided by the

tangential velocity, the same as the largest perpendicular velocity described above.

Given the maximum speed of the drones 3m/s and the radius of circle 12m, period of

the motion is)(8
v

r2Tmin sππ
== . Since the minimum period is known, T=32s is

confirmed to be the period of motion for all of our particles.

For the Figure 7, the function of yv can be presented as tvv ⋅−= ωsintby ）（ ,

where xv is the perpendicular velocity, v is the tangential velocity, ω is the angular

velocity and t is the time elapsed.

From s32T = we are able to calculate
16T

2 ππω == . The v can be determined

by the circumference of the circle divided by the period decided by us, so

)/(75.02 sm
T

rv ππ
== .

The function of the perpendicular velocity of each particle is rewritten as

Team #8040 Page 25 of 40

 tv
16

sin75.0ty
ππ−=）（

Figure 7. The graph of the perpendicular velocity of each particle

Our team decide to divide the dragon body into 2 separate parts(the main part of

the body and the front part of the body) in order to make the dragon body to wave

without breaking in the middle. The function tv
16

sin75.0ty
ππ−=）（ is for the

particle at x=12.5, however, there is no drone at x=12.5 because all the drones are

assigned integer x-coordinate. But all the points on sine function of dragon’s body are

closely related. One whole period of the function can be divided into 50 as the number

of drones contained in one period. As waves proceed, the y-coordinate of consecutive

particles are related in uniform time difference. So the velocity of particles behind can

be determined by the function

)]
50

)5.12x(32-(
16

sin[75.0)(-
-= ttvny

ππ ,]107,13[x∈ , Ix∈ .

When all the particles in the domain [13,107] oscillates in the velocity described

by the function, the main part of the body is animated.

For the particle in the interval [1, 12], the wave cannot be naturally represented

by sine function because the head of the dragon does not move at all. Therefore, it is

designed as a waving string that is fixed at one end. The particles on the string are

Team #8040 Page 26 of 40

also going to move up and down periodically. The velocity of particle in this interval

can be determined by
16

)(
T

)(2 xfxfv ππ
== .

So the function of the perpendicular velocity is

)
16

sin(
16

x)
25

sin(8
)(ttvay

π
ππ

−= ,]12,1[x∈ , Ix∈ .

When all the particles waves as the function describes, the front part of the body

is animated.

In conclusion, the velocities of particles can be described by the following

function:













∈∈
−

−=

∈∈−=

Ixxttv

Ixxttv

y

ay

],107,13[)],
50

)5.12x(32−(
16

sin[75.0)(

],12,1[),
16

sin(
16

x)
25

sin(8
)(

b
ππ

π
ππ

,

Where x is the x-coordinate of each drone and t=0s at the initial of the animation,

which also means all the drones have m/s0=xv .

4.3 Math Modeling of the Smile Face

4.3.1 Initial location of the drones for the Smile face
In this image, the outline of the face can use the same equation as the wheel in

the Ferris wheel. Accordingly, the coordinate of the point on the contour of the face

can be represented as

(x+sinθ*r, y+cosθ*r, z), which θ = 0 + Δθ*n,

(0 < n ≤ 360, n is an integer, Δθ = 360/ntotal).

Also, the coordinate of the eyes can be represented as

(x + n, y+1/3*r, z)

(n is an integer, -20 ≤ n ≤ -6 for the left eye, and 6 ≤ n ≤ 20 for the right eye).

Finally, the coordinate of the mouth can be represented as

(x + m, y - 1/3*r, z) (m is an integer, -15 ≤ m ≤ 15)

Team #8040 Page 27 of 40

For better viewing experience, we title the smiling face by 45 degree, and the

equation result in:

⎩
⎨

⎧
x = x + r sinθ

y = (y + r cosθ) × √2
2

z = z + (y + r cosθ) × √2
2

⎩
⎨

⎧
x = x + n

y = (y + 1 3 ∗ r) × √2
2

�

z = z + (y + 1 3 ∗ r) × √2
2

�

⎩
⎨

⎧
x = x + m

y = (y − 1 3 ∗ r) × √2
2

�

z = z + (y − 1 3 ∗ r) × √2
2

�

θ = 0 + Δθ*n, (0 < n ≤ 360, n is an integer, -20 ≤ n ≤ -6, m is an integer, n is an
integer, Δθ = 360/ntotalfor the left eye, and 6 ≤ n ≤ 20, -15≤m≤15 for the right eye.)

Figure 8. Initial location of the drones for the Smile face with with MATLAB

4.3.2 Animate rotation of the Smile face

For the movement from the normal face to the smile face, we need to have the

final coordinate that result in the smiling face. In order to achieve this, we can turn the

eyes of the face into two quadratic equations using vertex equation, that the vertex of

them are (-13,13),(13,13). And we can also apply it to the mouth, whose vertex is

(0,-13). As a result, the coordinate of the left eye after tilted for 45 degree is

⎩
⎪
⎨

⎪
⎧

x = x + n

y = (y − 3 49 × (n + 13)2 + 13) ×
√2
2�

z = z + (y − 3 49 × (n + 13)2 + 13) ×
√2
2�

(-20 ≤ n ≤ -6, n is an integer)

Same for the right eye:

Team #8040 Page 28 of 40

⎩
⎪
⎨

⎪
⎧

x = x + n

y = (y − 3 49 × (n− 13)2 + 13) ×
√2
2�

z = z + (y − 3 49 × (n− 13)2 + 13) ×
√2
2�

(6 ≤ n ≤ 20, n is an integer)
Which can also be applied for the mouth:

⎩
⎪
⎨

⎪
⎧

x = x + n

y = (y +
3

225
n2 − 13) ×

√2
2

z = z + (y +
3

225
n2 − 13) ×

√2
2

(-15 ≤ n ≤ 15, n is an integer)
And then we get:

Figure 9. Animate rotation of the Smile face with MATLAB

Also, the movement is really easy, drones acting as eyes and mouth just need to

move to the new position with the same x coordinate, so it is easy to categorize and

control.

4.3.3 Examination of the model of the Smile face

Because the smile face consist of a face, a mouth, and two eyes, the total amount

of drones needed for making the smile face is simply adding them up. We decided to

make a smile face with radius of 30m, so the drones needed for making the face is 180.

Team #8040 Page 29 of 40

Also, each eye will need 15 drones, and the mouth need 30 drones. Adding them up,

we need a total of 240 drones for making the smile face.

Then we used MATLAB programming to create the smile face image shown in

Figure 8 and 9.

5. The requirements for the Drone Clusters Lightshow

5.1 The number of drones, required launch area and air space

 Because too many of drones would easily cause problems for controlling, it

would become too big for audiences to see. After discussion and calculation, our

group decides to use no more than 427 drones to create three possible sky displays.

For the required launch area, we decide to take up an area of 9m×9m, which is

81 m2 as the launching platform. If the coordinate of the central square is (0,0),

which is just under the center of the wheel (0,0,50). There will be 6 drones stack on

each square, so the total amount of drones is 486, enough for the Ferris wheel which

only need 427 drones. In this case, we would be able to launch 486 drones, which

can satisfy our need for each model. The required air space is 50m×50m×50m for the

Ferris wheel, 20m×20m×100m for the dragon, and 50m×50m×50m for the smiling

face. Combining these information, we would need an air space of 80m as height,

50m as width, and 100m as length.

5.2 The launching process

For each square area, we will pile 6 drones together, and let them fly one by one.

Also, for the launching process for the Ferries wheel, to avoid the drones crashing into

each other, the drones in the upper layer will be marked with a smaller number. And

the first 77 drones will first fly and form the upper triangle, while the drones marked

78 - 197 will fly secondly and form the wheel. Then those marked 198 - 350 will go

up thirdly and form the spokes. Finally, those marked 350 - 427 will form the triangle

in front, and the beautiful Ferris wheel was made. For the returning trip of the drones,

it’s just the opposite sequence of the departure.

Team #8040 Page 30 of 40

5.3 The duration time for the light show and safety considerations

We expect the duration for the light show is 30 minutes, and each of the

displays will last for 1 minute until they switch to another pattern. Once all three

models has displayed, which takes three minutes. This sequence will repeat for 10

times. By giving out a plan like this, audiences would be able to see all three models

in a short time, so that they would not be bored. And they would be able to see the

model they like in a short time even if they miss it for one time.

For safety considerations, we consider 1 m as the safety distance between

drones based on the research on the parameter of a type of Intel’s drone. Besides, we

expect audiences to be 80 m away from the center of the light show, so that in this

case, the light show will be directly facing to them. Moreover, if one drone get out of

control and falls down, the audiences would be safe in that distance.

In Summary, the requirements for the Drone Clusters Lightshow are listed

below:

Table 4. The requirements for the Drone Clusters Lightshow

Displayshow
number of

drones
required

launch area
air space

duration of
the show

1. Ferries wheel 427

9m×9m
100m×50m×80m

(L*W*H)
30 minutes 2．Dragon 383

3. Smile Face 240

Team #8040 Page 31 of 40

6. Evaluation of the Model

6.1 Evaluation of the Ferris wheel Model

We believe our model of the Ferris wheel is one of the best, that consist of varies

components which will vastly increase our models ornamental value and operational

simplicity. Firstly, we tilted our pattern by 45 degree, so people can easily view the

beautiful Ferris wheel without holding their head straight upward which is tiring.

Secondly, we use two triangles as the support of the Ferris wheel, which makes the

Ferris wheel seems to be more as a three-dimensional object because it has three

layers. Thirdly, we give every point its unique coordinates, so it is much easier to

operate. Having its initial coordinate and final coordinate is enough for it to finish its

mission. Finally, we animated the ferries wheel by letting it to spin, which brings the

audiences a better experience and as well a surprise.

There are still disadvantages of our model, though, that at first the color of the

light of our drones is the same, so it’s a bit hard to differentiate the different parts of

the Ferris wheel. Second, we didn’t use the drones to present the seats of the Ferris

wheel, although it will be a much bigger project if we decided to do that.

6.2 Evaluation of the Dragon Model

6.2.1 Strengths

Our model gives a clear description of the positions of each drone, constituting

the basic profile and features of a traditional Chinese dragon, which ensures inerrably

and fluently: The whole model is decomposed into five parts and we analyzed the five

parts as separate figures respectively, which suddenly makes a complicated

mathematics problem seem relatively easy and logical to solve.

We use equations to derive a set of movement equations in order to let the

dragon behaves like a real lively dragon. Instead of using complex velocity equations,

we apply simple periodic functions to describe the motion of the drones that consists

the dragon.

Team #8040 Page 32 of 40

6.2.2 Drawbacks

Our model is relatively ideal, with no air flow disturbance between neighboring

drones. Determining the influence of air flow would be difficult without the accurate

data of the drones used for light show.

The positions of drones for head, claws, and tails cannot be simply represented

by some brief equations. Instead, we have to use coordinates of several points to

denote the positions of these parts.

6.3 Evaluation of the Smile face Model

This pattern is actually designed on purpose, that we hope our drones’ show can

bring everyone a happy day. I think our smiling face has a few advantages. First, our

smiling face is well designed, and everybody can recognize it immediately. Second, it

turns in a process of no expression into smile, which increases its ornamental value

and makes it more appealing to the audience. Third, the smiling face also tilted at an

angle of 45 degree, which again makes the audience more convenient to watch the

show.

On the other hand, the smiling face model also has some disadvantages. First,

the animation is sort of one-way, that it can only turn from no expression to smile and

can’t come back, otherwise it is too wired. Accordingly, the time of animation is a bit

short, and in another way of saying it, a bit simple. Second, the smiling face is sort of

a plane picture, which may not be so ornamental from the side. But after all it is still a

successful and meaningful project.

Team #8040 Page 33 of 40

7. Conclusion

Our team is asked to design an aerial light shows of drones. We address this

problem mainly through space coordinate frame which allows us to formulate the

motions of all the drones in all animations.

For the first show, the Ferris wheel, we firstly designed it as a composition of

several geometrical shapes, a circle with spokes and two identical triangles. The two

triangles don’t move basically, while we only consider the motion of the spokes and

the circle since they are the only dynamic part in this animation. Considering the

space coordinate of every points and using the idea of matrix, we construct the model

based on the thought of substituting every points own coordinate with its consecutive

former one in the same circular motion path. Moreover, we tilted this image by 45

degree angle toward the ground to optimize its visual effect.

In the second part, we utilized a different way to describe the motion. In order to

achieve the wavelike motion of dragon body, we define the speed of every moving

particle with periodical sine function, including the dragon body and details within,

such as scales, claws and the tail.

In the last show which is an unsmiling face changing into a smiling face, the

straight lines that represent expressionless eyes and mouth are bent to a smile face by

changing the coordinates of the points in the straight line to coordinates of points that

fit in parabolas..

After finishing all three models, our team gives out the evaluation for each of

them with MATLAB programming. Based on the calculation, our group decides to

use no more than 427 drones to create three possible sky displays. And the required

launch area takes up 9m×9m, and the air space of 80m as height, 50m as width, and

100m as length is need. The duration for the light show is 30 minutes. This suggests

that our mathematical model could successfully solve this problem.

Team #8040 Page 34 of 40

8. Reference

[1] 2017 HiMCM Contest Instructions

http://www.comap.com/highschool/contests/himcm/instructions.html

[2] Intel® Falcon™ 8+ System for Professional Inspection and Surveying Brochure

https://www.intel.com/content/www/us/en/drones/falcon-8-plus-brochure.html

[3] The picture of Chinese Dragon

http://www.lanimg.com/shiliang/201504/94403.html

[4] Liu Weiguo. MATLAB programming and application - Second Edition. Higher

education press, 2006.

[5] Chuanqi Qin, Ting Wang, Yuanfeng Jin. Study of MATLAB and Its Application
in Mathematical Modeling [J]. Modeling and Simulation, 2015, 4(3), 61-71.

http://www.comap.com/highschool/contests/himcm/instructions.html
https://www.intel.com/content/www/us/en/drones/falcon-8-plus-brochure.html
http://www.lanimg.com/shiliang/201504/94403.html

Team #8040 Page 35 of 40

9. Appendix

9.1 The Analysis of certain drones in the Ferris wheel

These two charts show the location of the innermost and outermost triangle, the

number after “A” and “C” is the serial number of the drones, which is counted

progressive increasing counter-clockwise. I choose to describe the location of the first

drone of each ten drone to show the framework of the triangles, which would easily

let the mayor know the basic shape of the holder our Ferris wheel.

Team #8040 Page 36 of 40

This chart shows the framework of outer circle of the Ferris wheel. The numbers

after “B” is the series number, counted clock-wise. We decided to use 120 drones to

show this circle. That is because in this case, there can be one drone each 3 degree

that is turned, which would be helpful for the calculation when we are animating the

Ferris wheel.

The spoke of the Ferris is also a hard part in our calculation due to the 45°

downward facing to the audience. By giving out these numbers, people who are in

charge of preparing the light show can use the corresponding points to locate the lines

that should have one drone each meter.

9.2 MATLAB Code for the Ferris wheel

a = 0:1/60*pi:2*pib = sin(a)*20

c = cos(a)*20*2^(1/2)/2d = 50+c

e = -19:1:19f = cos(1/2*pi)*e*2^(1/2)/2

g = 50 + fh = sin(1/4*pi)*e

i = cos(1/4*pi)*e*2^(1/2)/2j = 50+ i

k = sin(0)*el = cos(0)*e*2^(1/2)/2

m = 50 + ln = sin(3/4*pi)*e

o = cos(3/4*pi)*e*2^(1/2)/2p = 50 + o

q = -10:1:10r = (-33*2^(1/2))/2

s = 50 + (3*2^(1/2))/2 - 2^(1/2)/2*(3/2*20)

Team #8040 Page 37 of 40

t = (-27*2^(1/2))/2

u = 50 - (3*2^(1/2))/2 - 2^(1/2)/2*(3/2*20)v = -29:1:0

w = 1/3*vx = v*2^(1/2)-3*2^(1/2)/2

y = 50+3*2^(1/2)/2-2^(1/2)*(-v)z = v*2^(1/2)+3*2^(1/2)/2

z1 = 50-3*2^(1/2)/2-2^(1/2)*(-v)z2 = -1/3*v

z3 = v*2^(1/2)-3*2^(1/2)/2z4 = 50+3*2^(1/2)/2-2^(1/2)*(-v)

z5 = v*2^(1/2)+3*2^(1/2)/2z6 = 50-3*2^(1/2)/2-2^(1/2)*(-v)

scatter3(b,c,d)hold on

scatter3(e,f,g)scatter3(h,i,j)

scatter3(k,l,m)scatter3(n,o,p)

scatter3(q,r,s)scatter3(q,t,u)

scatter3(w,x,y)scatter3(w,z,z1)

scatter3(z2,z3,z4)scatter3(z2,z5,z6)

9.3 MATLAB Code for the Dragon

c=1:1:100

c= Columns 1 through 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Columns 17 through 32

 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

 Columns 33 through 48

 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

 Columns 49 through 64

 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

 Columns 65 through 80

 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

 Columns 81 through 96

 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

 Columns 97 through 100

Team #8040 Page 38 of 40

97 98 99 100

d=8*sin((pi*c)/25)

e=1:10:100

e =1 11 21 31 41 51 61 71 81 91

f=8*sin((pi*e)/25)+12;

g=10:10:100

g =10 20 30 40 50 60 70 80 90 100

h=8*sin((pi*g)/25)+4;

i=5:10:95

i =5 15 25 35 45 55 65 75 85 95

j=8*sin((pi*i)/25)+8;

k=10:10:100

k =10 20 30 40 50 60 70 80 90 100

k=10:10:100

l=8*sin((pi*k)/25)+5;

m=5:10:95

m= 5 15 25 35 45 55 65 75 85 95

n=8*sin((pi*m)/25)+9;

o=10:10:100

o =10 20 30 40 50 60 70 80 90 100

p=8*sin((pi*o)/25)+3;

q=5:10:95

q =5 15 25 35 45 55 65 75 85 95

r=8*sin((pi*r)/25)+7;

scatter(a,b)

hold on

scatter(c,d)

scatter(e,f)

Team #8040 Page 39 of 40

scatter(g,h)

scatter(i,j)

scatter(k,l)

scatter(m.n)

scatter(o,p)

scatter(q,r)

Comments: (a,b) is set of all the points that represent head, paws, and tail.

9.3 MATLAB Code for the Dragon

(1) No Smile Face:

face = 0:1/90*pi:2*pi;

facex = sin(face)*30

facey = cos(face)*30*2^(1/2)/2

facez = 60+facey;

scatter3(facex,facey,facez)

hold on

lefteye = -20:1:-6

lefteyex = lefteye;

lefteyey = (lefteyex*0+1/3*30)*2^(1/2)/2;

lefteyez = 60+lefteyey;

scatter3(lefteyex,lefteyey,lefteyez)

righteye = 6:1:20

righteyex = righteye

righteyey = (righteyex*0+1/3*30)*2^(1/2)/2

righteyez = 60+righteyey

scatter3(righteyex,righteyey,righteyez)

mouth = -15:1:15

mouthx = mouth

mouthy = (mouthx*0-1/3*30)*2^(1/2)/2;

Team #8040 Page 40 of 40

mouthz = 60+mouthy

scatter3(mouthx,mouthy,mouthz)

(2) Smiling Face:

face = 0:1/90*pi:2*pi;

facex = sin(face)*30

facey = cos(face)*30*2^(1/2)/2

facez = 60+facey;

scatter3(facex,facey,facez)

hold on

lefteye = -20:1:-6

lefteyex = lefteye;

lefteyey = (-3/49*(lefteye+13).^2+13)*2^(1/2)/2;

lefteyez = 60+lefteyey

scatter3(lefteyex,lefteyey,lefteyez)

righteye = 6:1:20

righteyex = righteye

righteyey = (-3/49*(righteye-13).^2+13)*2^(1/2)/2;

righteyez = 60+righteyey

scatter3(righteyex,righteyey,righteyez)

mouth = -15:1:15

mouthx = mouth

mouthy = (3/225*mouth.^2-13)*2^(1/2)/2;

mouthz = 60+mouthy

scatter3(mouthx,mouthy,mouthz)

